证券简称: 芯动联科

安徽芯动联科微系统股份有限公司 投资者关系活动记录表

编号: 2024-008

	// ·
机次业头石	□ 特定对象调研 □ 媒体采访
投资者关系 活动类别	│□ 分析师会议 □ 业绩说明会 │□ 新闻发布会 □ 现场参观
1000000	□
参与单位名称	华夏基金、银华基金、招银理财、华泰证券、宝盈基金、国泰安保基金、兴业证券、东方基金、中船基金、千合资本、长盛基金、鑫元基金、浙商证券、景顺长城、太平基金、华福证券、中金公司、中信建投、嘉实基金、重阳投资、时代复兴、人保养老、星石投资、华夏未来、方正证券等
地点	现场会议
上市公司接 待人员姓名	董事会秘书林明
投资者关系	1、公司概况介绍如下:
活动主要内	安徽芯动联科微系统股份有限公司成立于 2012 年,
容介绍	于 2023 年 6 月 30 日在上海证券交易所科创板成功上
	市,股票代码: 688582。主营业务为高性能硅基 MEMS 惯
	性传感器的研发、测试与销售,公司已形成自主知识产权
	的高性能 MEMS 惯性传感器产品体系并批量生产及应
	用,在 MEMS 惯性传感器芯片设计、MEMS 工艺方案开
	发、封装与测试等主要环节形成了技术闭环,建立了完整
	的业务流程和供应链体系。 公司 MEMS 传感器芯片已达到导航级精度,主要技
	MEMS 惯性传感器领域填补了国内空白。
	目前,公司主要产品为高性能 MEMS 惯性传感器,
	包括陀螺仪和加速度计,均属于惯性系统的核心器件。其
	中,陀螺仪和加速度计作为基础的惯性器件,通过下游
	模组厂商、系统厂商等环节的组装加工后,向行业客户提
	供为行业用户实现导航定位、姿态感知、状态监测,平台
	稳定等多项应用功能。目前已应用于无人系统、工业机器
	人、自动驾驶、商业航天、船舶、石油勘探、高速铁路、地质
	勘探、应急通信、灾情预警等诸多领域。
	 2、公司之前公告车企定点的工作进展怎么样了?
	答: 近期公司公告获得国内一家知名车企的定点通

知,客户选择本公司作为零件的供应商,具体产品供应时间、价格以及供应量以签订的供应协议及销售订单为准。后续公司将严格按照客户的要求,在规定的时间内完成产品开发与交付工作。该通知为零件定点通知,非正式订单或销售合同,对公司本年度的经营业务影响较小,预计不会构成重大影响。上述事项将进一步提升公司在汽车市场的影响力,有利于提升公司整体竞争力。另外,国内车企的导航定位产品的技术方案演变很快,公司也在跟踪市场的变化,积极研发适合不同场景的产品,以更好适应未来车企在应用形态的变化。目前,公司和国内车企普遍有接触,很多工作都在积极推进。

3、公司压力传感器的进展怎么样?

答:公司以谐振式 MEMS 惯性传感器器件的研发经验为基础,通过技术改造开发谐振压力传感器,具备一定技术积淀和优势。目前,小量程谐振压力传感器处于小批量送货阶段,潜在客户正在进行性能验证,大量程谐振压力传感器处于开发阶段。

4、公司在低空经济上有哪些布局?

答:目前惯性器件在低空经济里主要是无人机、飞行汽车及 eVTOL 等领域的应用。公司对这些领域的布局主要考虑了价格水平和技术性能上的要求。公司目前在配合各个潜在客户提供 IMU 及相关模组样件以供客户进行性能验证和体系认证等工作。

5、公司未来市场的拓展方向有哪些?

答:在高可靠、高端工业领域,高性能 MEMS 惯性传感器的渗透率还在提升,国内跟国际相比还有一定距离,有长足的提升空间。同时,国产替代的需求对公司产品未来增长也会有帮助;商业航天领域,随着微纳卫星需求的增加,公司产品需求会有所增加,这个市场起步低,公司多年前就布局该领域,产品得到市场验证,会受益于卫星市场的景气;无人驾驶领域,目前公司已经有一个定点,对于公司来讲,这是一个全新的市场,这个市场的需求提升,会对公司产品的持续拓展有帮助;另外压力传感器、FM 加速度计等都是公司的新品,未来会给公司带来一定业绩增量。

6、公司披露了一个大额合同订单金额约 1.222 亿元 人民币,能否介绍一下这个合同的情况?

答:该合同为向客户提供一批陀螺仪和加速度计并 预计在年内执行完毕。若本次销售合同顺利实施,预计将

	会对公司经营业绩产生积极影响,有利于提升公司的持续盈利能力和核心竞争力,为后续经营发展提供有力保障。合同双方均具有良好的履约能力,但在合同履行期间,如遇不可抗力或其他因素将影响最终执行情况。这个合同的客户是公司的老客户,这个合同的签订也体现了我们所处行业的一个特点,即公司产品验证周期比较长,一旦产品验证完成,可能就会有持续的订单增加。公司很多客户处于不同的验证和模组开发阶段,将滚动进入定型和量产阶段。
附件清单 (如有)	无
日期	2024年8月21日